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Abstract—This paper focuses on trends, opportunities and
challenges of novel arithmetics for DNN signal processing,
with particular reference to assisted and autonomous driving
applications. Due to strict constrains in terms of latency,
dependability and security of autonomous driving, machine
perception (i.e. detection or decisions tasks) based on DNN can
not be implemented relying on a remote cloud access. These
tasks must be performed in real-time on embedded systems
on-board the vehicle, particularly for the inference phase
(considering the use of DNNs pre-trained during an off-line
step). When developing a DNN computing platform, the choice
of the computing arithmetics matters. Moreover, functional safe
applications like autonomous driving pose severe constraints on
the effect that signal processing accuracy has on final rate of
wrong detection/decisions. Hence, after reviewing the different
choices and trade-off concerning arithmetics, both in academia
and industry, we highlight the issues in implementing DNN
accelerators to achieve accurate and low-complex processing
of automotive sensor signals (the latter coming from diverse
sources like cameras, radars, lidars, ultrasonics). The focus is
on both on general-purpose operations massively used in DNN
like multiply, accumulation, compare, or on specific functions
like for example sigmoid or hyperbolic tangent, used for neuron
activation.

Index Terms—Deep Neural Networks (DNN), Autonomous
Driving, Real-Time Image & Signal Processing/Classification,
Alternative Real Number Representations, HW Accelerators.

I. INTRODUCTION

THE use of deep neural networks (DNNs) as a general
tool for signal and data processing is increasing both

in automotive industry and academia, proposing a set of
algorithms for most of the autonomous driving tasks.

The effort in computing these artificial intelligence al-
gorithms is an open challenge in the field of computing
platforms nowadays. In particular, when considering strict
requirements, such as lowering the power consumption,
maximizing the throughput and minimizing the latency the
computational complexity becomes more and more critical.
Moreover, with the modern achievements in sensor com-
ponents, the complexity and requirements further scale with
data coming in higher volumes and dimensions and at higher
speed [1].
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This survey work is focused on the trends, opportunities
and challenges of the adoption of DNN signal process-
ing techniques for autonomous driving and the needs of
signal processing acceleration, and the relevant computing
arithmetic. Indeed, autonomous driving is a safety critical
application, as specified also in functional safety standards
like ISO26262, with strict requirements in terms of real-
time (both throughput and latency) [1, 2]. In Levels L1
and L2 and of the SAE autonomous driving scale [3] just
an assistance to human driver is needed. Therefore, signal
processing based on deterministic algorithms is still enough,
e.g. FFT-based processing of Frequency Modulated Contin-
uous Wave Radar (FMCW) as done in [1]. Instead, for high
autonomous driving levels, from L3 to L5, the complexity of
the scenario and the need of signal processing not only for
sensing, but also for localization, navigation, decision and
actuation, is so high that in recent state-of-art DNN signal
processing is proposed to be used on-board [1, 2, 4, 5]. This
trend is confirmed by the rise of the Autonomous Systems
Initiative within the IEEE SP society [6]. DNNs have
reached state-of-art in several signal processing domains
like image processing, segmentation, classification, tracking
[7]–[10], computer vision [11] and related areas [12]–[14].
In the automotive field, while sensor raw data processing
(from cameras, lidars, radars, ultrasonics) can be still per-
formed using classical signal processing techniques, DNNs
are emerging as more appropriate solutions to solve complex
and high level tasks such as data fusion, classification, and
planning in harsh, unstructured and continuously chang-
ing environments. Tasks such as scene understanding (e.g.
image segmentation, region-of-interest extraction, sub-scene
classification, etc.) must be done on-board the vehicles,
since cloud-based computing scenarios (where the signal
processing is done on remote cloud server and on-board
there is only a client unit generating requests to the server)
suffers of several issues: privacy, authentication, integrity or
connection latency and contention or even communication
unavailability in uncovered areas (highway tunnels, etc). On-
board DNN signal processing can be done only if a low
computational complex algorithm is used and a performing
hardware is adopted. Hence, on-board computing units for
DNN should be optimized in terms of the ratio between
signal processing throughput performance and resources
(memory, bandwidth, power consumption, etc.) [15]–[17].
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This is the trend that also big players are following like
Google, NVIDIA or Intel, that are trying to enter in the
autonomous driving market, or the recently announced Full
Self Driving (FSD) chip from Tesla. This concept is also
the core of the automotive stream in the H2020 European
Processor Initiative (embedded HPC for autonomous driving
with the BMW group as main technology end user [17],
where the article’s authors are involved. To address the
above issues new computing arithmetic styles are appearing
in state of art [18]–[26] to overcome the classic fixed-
point (INT) vs. IEEE-754 floating point duality in case
of embedded DNN signal processing. Just as an example,
Google is proposing BFLOAT16 (Brain FLOAT), equivalent
to a standard single-precision floating point value with a
truncated mantissa field. Basically, they are less precise than
Float16, but with a range similar to Float32. BFLOAT16 are
supported in Google cloud TPU and TensorFlow and Intel
AI processors. Intel is also proposing flexpoint [18, 19],
a 16-bit block floating-point format aiming at replacing
Float32. NVIDIA Turing architecture is supporting in its
tensor cores Float16 to Float16 or Float32 matrix multiply-
add operations, and also INT4 or INT8 to INT32 matrix
multiply-add operations, the latter for inferencing workloads
that tolerate quantization [24]. The Tesla FSD chip exploits a
neural processing units using 8-bit by 8-bit integer multiply
and a 32-bit integer addition. Transprecision computing for
DNN is also proposed in state of art by academia [20]
and industry, e.g. IBM and Greenwaves in [21]. Recently,
a novel way to represent real numbers, called Posit, has
been proposed [25, 26]. Basically, the Posit format can be
thought as a compressed floating point representation, where
more mantissa bits are used for numbers around 1, and less
mantissa bits stepping away from 1, within a fixed-length
format with variable sized fields (the exponent bits adapts
accordingly, to maintain the format fixed in length).

The rest of this tutorial paper is organized as follows.
Section II reviews the onboard computing challenge of
DNN signal processing for sensing and machine perception,
and the emerging trends in the state of art to solve this
issue. Sections III and IV will review computing arithmetic
proposed for DNN signal processing as alternative to classic
IEEE-754 floats and integer both in academia and industry.
In particular, Section IV focuses on the new Posit format.
Posit implementations based on software (SW) libraries or
custom hardware (HW) accelerator are discussed in Section
V. In Section VI a specific focus is on special signal
processing functions like sigmoid and hyperbolic tangent
for neural networks. Section VI also addresses the problem
of the efficient implementation of computing approaches
based on Look-up-tables (LUTs), Multiply and Accumu-
late (MAC), Fused/Exact dot product, Vectorization/loop-
unrolling/Intrinsics, low-resolution DNN. Sections VII and
VIII discuss tradeoff of DNN signal processing in terms of
accuracy vs. complexity, taking care of results we achieved
using different types of datasets and DNNs (considering both
training and inference phases, or just inference of a pre-

trained network). Section IX will draw some conclusions
and will discuss upcoming trends in the sector.

II. STATE-OF-THE-ART REVIEW OF DNN SIGNAL
PROCESSING IN AUTONOMOUS DRIVING

Autonomous driving is deeply bounded to vehicle navi-
gation, including vehicle self-localisation, motion, mapping
and interaction. A relevant survey on trends and technologies
for autonomous driving is presented in [27]. Localization
task is aimed to know the vehicle pose (position and
orientation) referred to a relative or absolute coordinate
system. Traditional approaches to localization include satel-
lite communication like GPS. However these signals are
typically weak radio ones that can be easily occluded by
trees or buildings in a metropolitan scenario. There exist
other types of equipment like Inertial Measurements Unit
that, combined with GPS, RTK (Real Time Kinematic) and
Kalman-based predictors, can solve this problem, but they
increase implementation cost. Since the task of constantly
knowing the vehicle position is critical one cannot rely only
on these type of signals. The mapping task introduces a
further level of context awareness. With a map-matching
approach a vehicle is able to know not only its position,
but also its surroundings. An important mapping technique
is Simultaneous Localization and Mapping (SLAM, [28])
that allows a vehicle to bypass or minimize the need for
satellite navigation. SLAM considers the surrounding as a
probability distribution of points rather than a snapshots in
time of the context, building a world model making use of
lidar sensors or similar. The typical output of these sensors
are point clouds representing the surrounding environment,
that must be processed in order to give more information
about it. In [29] a way to classify lidar images using DNNs
is presented. In [30] a benchmark challenge for DNNs for
the German Traffic Road Signs (GTRSB) is proposed and
in [31] there are some advanced DNN techniques like data
augmentation and region of interest extraction to maximize
DNN recognition and detection accuracy, reaching top-
level accuracy on the road signs recognition and detection
benchmarks. Moreover, with the advanced developments in
computer vision, vehicles can be equipped with cameras,
whose signals can be processed by DNN as well. For exam-
ple, in [32]–[34] a semantic segmentation of city landscapes
challenge is presented, providing a benchmarks for DNNs to
prove the ability to identify the main components of a road
(such as lanes, other vehicles and pedestrians), from image
or video signals. On the industry side, with the advent of
companies like Tesla or Google’s Waymo, the use of DNNs
in processing lidar or camera signals has become more and
more central.

A. Low-precision DNNs

Academia and industry have proposed multiple solutions
to the problem of reducing the number of bit used to
represents DNNs’ weights, compressing the size from 32-
bit to 16, 8, 4 and even 1-bit, resulting in little-to-none
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degradation in performance when tested with common DNN
tasks and benchmarks. As an emerging trend in state of
art, literature is starting to explore the possibility to use
the newly introduced Posit representation in order to halve
the weights’ size though maintaining the same accuracy
and to further reduce the weights’ size sacrificing little-
to-none in DNN accuracy. A very interesting work has
been presented in [35], where network weights have been
binarized, dramatically reducing the network footprint and
increasing the training and inference speed. On the industry
side, NVIDIA has lead the reduction of weight bits with its
Tensor Processing Units (TPU), introducing integer weight
types such as 8 and 4-bit integers.

In [36] a novel method is introduced to train neural
networks with extremely low precision (eg, 1-bit) weights
and activations, at run-time. In [37] the authors studied
the training of NNs using low-precision fixed-point com-
putations and evaluated the impact of different rounding
techniques.

The vision presented in this work aims to develop neural
network accelerator entirely based on Posits, also embedding
look-up tables for low-bit Posits such as 4-to-12-bit Posits.
In this way we ensure an homogeneity of representations
that is lost in the NVIDIA approach, due to the discontinuity
introduced when switching from floating point half-precision
to 8 or 4-bit integers.

III. ALTERNATIVE REPRESENTATIONS FOR REALS

In this section we review the most interesting representa-
tion for real numbers, which could be used as an alternative
to the floating point representation (IEEE-754 standard,
2008, that will be referred simply as Float from now on). In
the following we will use an homogeneous representation
for the different number representation “Type Bits[,Exp]”,
where Type is the name of the representation (Float, Posit,
Fixed), Bits is the number of bits, and Exp is the number of
bits used for the exponent. For fixed point Exp represents
the scaling factor to be applied to the number considered
signed integer (e.g Fixed16,8 represents value with 8 bit of
integer part and 8 of fractional part). For Float when Exp
is missing the standard value is assumed: 11, 8 and 5 for
Float64, Float32 and Float16 respectively corresponding to
binary64, binary32 and binary16 of the IEEE standard.

A. BFLOAT16

The research on DNNs has demonstrated that 16-bit Floats
could be enough for many classification problems. From this
the idea to give HW support to the standard half-precision
(Float16,5) too, in addition (or as an alternative) to Float32.
The problem is that pre-trained DNN models are usually
available with Float32, and thus their lowering to 5 bits
of exponent could introduce alterations to the classification
and thus could overall affect the classification performance.
For this reason, the BFLOAT16 format (Brain Float 16-
bit, namely Float16,8 in the present notation) has been
recently introduced with 8 bits of exponent instead of 5.

Having the same size of the exponent of Float32 the use of
BFLOAT16 introduces loss of numerical precision but not
loss of dynamic range. Also the conversion with Float32 is
bitwise.

B. FlexPoint

Flexpoint numbers [18] are characterized by a shared
tensor exponent used for all the number representations in
a given neural network layer (e.g. 16-bit flexpoint plus 5-bit
shared exponent). Moreover the magnitude of the common
exponent is dynamically adjusted according to the required
numerical range during training. The flexpoint approach,
although interesting and powerful, cannot be used as a drop-
in replacement to Floats: software changes are required to
the DNN software libraries. This also makes cumbersome
the reuse of pre-trained DNNs.

C. Type-III Uniform numbers: Posits

Type-III uniform numbers are the third proposal of uni-
versal numbers, proposed again by Gustafson. They can
be exact (Valids) or inexact (Posits). Posits are particularly
interesting, because they are a drop-in replacement for
Floats, while Valids are not. Posits will be presented and
deeply investigated in next section. Before that, we present
on the next two sub-sections two further representations that
are somehow related to Posits.

D. Universal Coding of the Reals using Bisection

The bisection method proposed by Peter Lindstrom in [38]
is based on Elias codes. It encodes each real number in
a binary string based on bi-secting intervals, starting from
the base interval (− inf,+ inf). Each bit of the string is
the result of a comparison with a value contained in a
given interval. The framework proposed as universal coding
allows to build new number systems by defining a generator
function to produce the various intervals and a so called
refinement operator, to compute the average value between
two numbers. Theoretically speaking this encoding is very
interesting due to the possibility to rapidly prototype and
verify the representation. However the encoding is quite
inefficient, involving elaborate expressions in its computa-
tions thus becoming non-hardware-friendly. This suggests
that this particular encoding is not so interesting in the
high performance hardware accelerator topic discussed here,
although also Posit numbers can be generated using this
powerful encoding technique.

E. Logarithmic Numbers and the Kulisch Accumulator

As pointed out by Jeff Johnson in [39], a researcher at
Facebook AI Research, the problem with floating point op-
erations in hardware is that the transistors needed to perform
multiplication and division occupy the main part of the FPU,
being significantly more complex than that for addition/sub-
traction. To overcome this problem, the Logarithmic Number
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System (LNS) has been proposed decades ago in [40]. LNS
consists in representing a number as y = 2x, i.e., in a pure
logarithmic way. This makes multiplication and division just
a matter of adding and subtracting logarithmic numbers.

However this requires huge hardware lookup tables to
compute the sum or difference of two logarithmic numbers
[39]. This has been one of the main bottlenecks for the
format, since handling these tables can be more expensive
than basic hardware multipliers.

In order to avoid common fused multiply and add com-
plexity, the Kulisch accumulation can be used. The idea is
not to accumulate with a floating point type but instead
maintaining an accumulator in a fixed-point type. As a
drawback this approach leads to a significant increase of in
logic circuitry and power consumption, due to the bit-count
requirements of the Kulisch accumulator.

Although this approach is really promising and can be
combined with the Posit philosophy, it has not been demon-
strated yet that logarithmic numbers are more effective than
Floats for DNNs. Thus more research is clearly needed
before resorting to this solution.

IV. A DEEPER INVESTIGATION ON POSITS

Posit numbers have been proposed by John L. Gustafson
in [26]. The format is a fixed-length representation for real
numbers and it has two parameters: the total number of bits
totbits and the number of exponent bits esbits. It is composed
by a maximum of four fields (see Fig. 1):

• 1-bit sign field S;
• variable length regime field R (1..rebits);
• exponent field E, having a pre-determined maximum

length of esbits (the field E can even be absent);
• variable length fraction field F (can be absent too).
With the adopted notations PositN,E refers to a Posit with

N total bits and E esbits.
012345678910111213141516171819202122232425262728293031

S Regime(1..rebits) Exponent (0..esbits) Fraction (0...)

Fig. 1: Illustration of the of 32-bit Posit data type.

Both the total number of bits and the maximum size of
the exponent field (esbits) are decided empirically a-priori,
depending on the application. These two lengths are those
that fully characterize the Posit representation. The regime
field length is determined by the number of consecutive 0s
after the sign bit ended by one 1 or, vice versa, by the
number of consecutive 1s ended by one 0. In the former
case, the regime value is negative. After having determined
the regime length, the associated value k can be retrieved
according to the procedure illustrated in Fig. 2. The bits that
follow the regime field are, if present, the ones associated
to the exponent. Their number can be, at maximum, equal
to esbits (the a-priori predetermined maximum number of
exponent bits). When the field is missing, the exponent e
is assumed zero. When less bit than esbits are present, the

value of e can be obtained by filling the missing bits with
zeros before decoding it (see Fig.3).

If there are additional bits after the exponent field, they are
the ones associated to the fractional part of the mantissa. If
the Posit is negative (first bit equal to one), before decoding
it to retrieve k, e and f , the 2’s complement of its remaining
bits must be computed.

Fig. 2: Mapping table between regime bits and k value for
a 5-bit string. Amber bits represent the regime bits, brown
ones terminate the regime run.

Therefore, let p the integer represented by the Posit bit-
string, k the correspondent integer indexed by the regime bits
into a run-length table (see Figure 2), e the unsigned integer
associated to the exponent field E and f = 0.f1f2...fn (the
fractional part of the mantissa m (m = 1+f ), associated to
the F field); the expression that maps the bitset to the real
value is:

x =


0, if p = 0

NaR, if p = −2(totbits−1)

sign(p)× uk · 2e · (1 + f), otherwise

where
u = 22

esbits

.

Notably it is possible to prove that for PositN,0 the
numbers in the range [−1, 1] are encoded as signed fixed
points over N−1 bits. This property is important for L1
operations discussed later.

Figure 3 shows an example of Posit16,3 (16-bit with max
3 exponent bits) and its decoding procedure.

0123456789101112131415

S R E F

0 0001 101 00001101

0123456789101112131415

S R E

0 11111111111110 1

Fig. 3: Two examples of Posit16,3 that is 16-bit Posit with
esbits=3. For the top case, the associated real value is:
+256−3 · 25 · (1 + 13/256) (13/256 is the value of the
fraction, 1 + 13/256 is the value of the mantissa). The
final value is therefore +1.907348 × 10−6 · (1 + 13/256)
∼= +2.0042× 10−6. For the bottom case, the associated real
value is: +256+12 · 24 · (1 + 0) (since the fractional part of
the mantissa is missing, we set it to zero). The final value is
therefore 296 ·24 ∼= +1.2676506×1030. The second example
allows to clarify that: i) the fractional part can be missing,
ii) the exponent field can be shorter than its maximum size
(in that case the missing bits are assumed zero: the exponent
4 comes from the reconstructed exponent field 100).
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A. Posit advantages over Floats and industrial adoption

A shown in [26], the main advantages of Posits over IEEE
floating points are represented by less waste of representa-
tions (such as unique 0 and NaN bit configurations) and
higher decimal accuracy when compared to same bit length
floating point. Moreover, the simplicity of the Posit num-
ber systems theoretically allows a more hardware friendly
implementation, simplifying circuitry thus reducing area
occupation and power consumption.

Even if the Posit format is relatively new, it has already
attracted the attention of researchers from Facebook, IBM,
Google, Microsoft, Intel, Bosch, Huawei, Fujitsu, Qual-
comm, Kalray, Micron, Altair, Etaphase, Posit Research, Rex
Computing, Stillwater Supercomputing, and Comma Corp,
as reported by Gustafson during a recent talk [41].

V. SOFTWARE AND HARDWARE IMPLEMENTATIONS OF
POSITS

A. Software Implementations

Having software implementation of Posit arithmetic is
useful in order to test the applicability of the type to existent
libraries and algorithms in order to compare performances
against the traditional floats, also in the absence of proper
hardware support for Posit operations.

1) SoftPosit: This is a library, endorsed by NGA (Next
Generation Arithmetic committee). Positive factors include
multi-platform, supporting C, C++, Julia and Python. How-
ever it presents hard-coded Posit configurations and non-
modern implementation, without templatized classes for the
various configurations. It also lacks support for tabulated
Posits.

2) bfp (beyond floating point): BFP is one of the first
C++ Posit arithmetic libraries developed. However it is still
incomplete and does not support Posit tabulation.

3) StillWater: StillWater is a complete library with mod-
ern C++ features and class templatization, although being
computationally heavy and missing Posit tabulation.

4) cppPosit: This library (available in [42]), developed by
the authors of the present work, exploits some of the modern
C++ features like templates (i.e., generic programming)
and traits. It supports Posit tabulation and logic separation
between frontend interface and backend underlying type
used for computation: the frontend is the Posit number
expressed in its packed form, while the backend allows to
choose different approaches for performing mathematical
operations.

The library identifies four operational levels, with increas-
ing computational cost. At level 1 (called L1), operations are
just bit manipulation of the bits of the encoding. The cost
is the same of integer operations performed in ALU. At
level 2, Posit data is extracted to its fields (sign, regime,
exponent, and fraction), with no need to compute the expo-
nent completely. Computations are performed on these fields
and the cost includes encoding and decoding of the format.
At level 3 we have the unpacked version that is completely
built (including sign, exponent, fraction). In addition to level

Operation Approximated Requirements
2 · x no esbits=0
x/2 no esbits=0
1− x no esbits=0, x ∈ [−1, 1]
1/x yes esbits=0

FastSigmoid yes esbits=0
FastTanh [43] yes esbits=0

FastELU yes esbits=0

TABLE I: cppPosit most important L1 operations, stating
whether the operation produces an exact or an approximated
result and reporting the requirements to be fulfilled. For
instance notice how 1 − x can be computed using fast bit
manipulations only when x ∈ [−1, 1].

2 operations, here there is the need to build the full exponent.
At level 4 the unpacked version is used to perform the
operations in either software or hardware floating point or
using fixed point representations. The most efficient level is
of course the L1, since it comprehends operations that only
require bit-manipulation of the Posit representation, which
can be computed on existing ALUs, without having to wait
for Posit processing units. Table I reports most important
L1 operations provided by the library. The library offers the
possibility to use different backends for Posit operations:

• Fixed number backend (using a quire-like approach);
• Tabulated backend (see VI-B);
• Floating point backend: either SW (SoftFloat) or HW

(FPU).
Each L3 operation in the cppPosit library undergoes three

different phases: i) decode, ii) operation backend, iii) encode.
Each of these phases requires different functionalities in the
processor architecture:

• Decode: mostly bit manipulation. The core function that
is used here is the count leading zeros (CLZ) builtin
function

• Backend:
– Fixed: requires big integer (64-128 bits) support
– Float: requires a Floating Point Unit (FPU)
– SoftFloat: requires 32/64-bit integer manipulations

• Encode: bitwise operations
Table II shows a summary of the requirements support

on two common architectures (both the architectures have
been used for the benchmarks executed in the next sections,
respectively Intel i7560u and ARM Cortex A72). The two
architectures do not differ in terms of hardware requirements
for the aforementioned phases. However, speaking about
the big integer support, the Intel instruction set architecture
(ISA) offers a single instruction (mulq) to perform a 64·64-
bit to 128-bit integer multiplication; on the other hand, the
ARM ISA requires the execution of two instructions.

B. Hardware Implementations of the Posit Processing Unit

Some work has already been done to implement Posit
units on FPGAs, in order to provide efficient and optimized
hardware implementation of Posit arithmetic. In [44] an al-
gorithmic flow and architecture generator for Posit numbers
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TABLE II: Requirements support of Intel and ARM for the
cppPosit library.

Requirements Intel 7th gen. (Kaby Lake) ARMv8
CLZ built-in X X
Big-integer X(1 single instr.) X(2 instr. needed)

FPU X X
Integer manip. X X

Bitwise ops X X

is proposed, including a Float-to-Posit converter unit and
base arithmetic units. For the converter the flow follows two
major parts, floating point unpacking and Posit construction.
The first part works as any floating point unit, while the other
determines the impact of the design on the hardware. This
has been implemented on a Xilinx Virtex-6 device, resulting
in around 600 FPGA slices for 32-bit Posit adder and 300
for a 16-bit Posit adder.

In [45] a Posit core generator called POSGEN is proposed.
In addition, the FPGA design has been enriched with an
extension of the BLAS library for the Posit numbers called
PBLAS, in order to connect the FPGA through the Intel
OpenCL libraries. The results show that the maximum fre-
quency reached by the proposed implementation matches the
state-of-art FloPoCo floating point implementation. However
the area consumed by the POSGEN implementation is much
higher than the FloPoCo one.

Another Posit arithmetic core (called PAU, Posit Arith-
metic Unit) generator is presented in [46] where generators
for Posit adder and multiplier are proposed. The design
results show a reduction in area occupation referring to [44]
both for adder and multiplier, as well as a reduction in power
consumption for 8-bit Posits. For 16-bit Posits the results are
overturned in favour of the other implementation, as well as
for 32-bit Posits. Moreover from the comparison between
the Posit realization and the standard IEEE floating point
on it results that a 32-bit Posit adder occupies less area and
has a lower delay than a 32-bit Float adder. 32-bit multiplier
instead occupies the same area but with higher delay. Finally,
a 16-bit adder occupies an higher area with higher delay.

In [47] another Posit arithmetic core generator has been
introduced, called PACoGEN. The work presents different
generators for HDL adder/subtractor and multiplier/division
cores. An interesting aspect of this implementation is the
pipelined Posit arithmetic architecture, aimed to increase the
throughput of the unit trying to produce a new result at each
clock cycle (when at regime), making the three phases of an
operation independent (Posit data extraction, core arithmetic
process and Posit construction). Design results shows that
the proposed implementation has a lower area (LUT) ·
period (ns) when compared to literature proposal such as
[46]. However, when the design is compared to standard FP
ones, results show that 32-bit Posit adder/multiplier units
occupy more area than some 32-bit FP ones.

An accelerator for Posit-based BLAS operations is pro-
posed in [48]. The work presents a modular framework for
Posit arithmetic with the common 3-step dataflow: Posit data
extraction, operation and construction. The implementation

consists in a Posit adder, multiplier and a Posit accumulator.
The BLAS library proposed enables vectorized operations
such as element-wise addition, subtraction and multiplica-
tion, as well as dot product and vector sum. Experimental
results show a consistent speed-up obtained when using the
vectorized approach when compared to a software imple-
mentation.

When considering FPGA implementation of Posit arith-
metic units we need to consider the area occupation (thus the
power consumption) of the realized design and compare it to
a FPU realization. Having a 32-bit hardware Posit unit makes
sense if the area of the realized Posit unit is less than the
FPU one. If this does not hold, it still makes sense to have a
16-bit hardware Posit unit if its area is less than a 32-bit FPU
one, since 16-bit Posit achieve similar performance of 32-
bit Floats in different application fields (in Section VIII we
show that in DNNs even a Posit8 can match the performance
of a Float32).

VI. POSIT-BASED DNNS FOR SIGNAL PROCESSING

Non-linear activation functions are a very important part
in DNNs. Its efficient implementation is therefore crucial.
In the next paragraphs we will see how some widely used
activation function can be efficiently computed when using
Posits.

A. DNN Activation Functions

In this subsection we present special implementations of
well-known mathematical functions and algorithms adapted
to the Posit format. When considering these implementa-
tions, it is crucial to build them mostly with L1 operations
(see V-A4).

1) Sigmoid: The sigmoid function:

sigmoid(x) =
1

1 + e−x

has a very efficient approximation when using Posit format
with 0 exponent bits, only consisting in a manipulation of
representation’s bits. This discovery is due to Yonemoto and
Gustafson [26]. Although this formula is appealing in neural
networks, since it leads to faster training, there are intrinsic
limitations when going down with the total number of bits
(precision). Indeed, the sigmoid function does not exploit
enough the dynamic range of the Float or Posit format, since
its co-domain varies in [0, 1]. For this reasons, we have
developed a fast approximation of the hyperbolic tangent
(see below).

2) Hyperbolic Tangent: In order to solve said problem,
an expression for the hyperbolic tangent has been derived,
using a linear combination of the sigmoid function:

tanh(x) = 2 · sigmoid(2 · x)− 1

This leads to a fast and approximated version of the hy-
perbolic tangent (FastTanh from now on) when using the
aforementioned fast sigmoid approximation:

FastTanh(x) = 2 · FastSigmoid(2 · x)− 1
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In order to have an L1 expression we initially restrict the
domain to the negative numbers only. Doubling operation
and sigmoid function are L1 when using 0 exponent bits
and the result of the first term of the expression is contained
in the unitary range. This means that computing −(1−y) is
also an L1 operation according to Table I. Finally thanks
to tanh symmetry we can extend back the domain also
to positive numbers. Figure 4 shows the time comparison
between the fast approximated version and the exact version
of the hyperbolic tangent. As we can see, the FastTanh
approximated version is six time faster than the exact tanh
version. Moreover, we computed the mean squared error
between the two, resulting in mse = 2.947 · 10−3 in the
entire Posit interval.

A similar approach can be applied to the Extended Linear
Unit (ELU) activation function. This function solves the
common problem of vanishing gradients of sigmoid-like
functions like the hyperbolic tangent and the effects of the
flattening of the ReLU for negative numbers.

ELU(x) =

{
ex − 1, if x ≤ 0

x otherwhise

Starting from the Sigmoid function we can obtain the
negative argument case as follows, where each step of the
following equation can be executed as an L1 operation with
contained approximation:

ELU(x) = 2 ·
(

1

2 · Sigmoid(−x)
− 1

)
If we switch from Sigmoid to the fast approximated version

already exploited with the hyperbolic tangent, we can get
a fast approximation of the ELU (called FastELU). Table
III shows an example of accuracy and timing improvements
when using the approximated ELU function in place of
the exact one. We trained a LeNet-like [49] model with
the different activation functions until negligible improve-
ments in validation accuracy were obtainable. Then we
tested the three mentioned trained models with the different
Posit types, reporting accuracy and processing time. As we
can see, the approximated FastELU model outperforms the
RELU model in terms of accuracy and, in particular, the
type Posit8,0 shows less degradation in terms of accuracy
with FastELU/ELU rather than RELU. In terms of timing
the FastELU and RELU are comparable with PositN,0 being
both L1 operations, while ELU is costlier. More mathemat-
ical details on the FastTanh and the FastELU can be found
in [50].

B. The Look-up-table approach

When using a low number of bits, the use of LUT
becomes appealing very soon. In theory, one could profile a
specific application (i.e., computing the histogram of most
used values and the most significant range), and then create
an ad-hoc series of values. For this set of values, one
only has to compute the four LUT for the four elementary

Fig. 4: Time comparison in various repetitions of ∼ 60k
executions of tanh and FastTanh for a Posit16,0 (benchmarks
were executed on a Intel 7th generation (Kaby Lake) Intel
i7-7560U processor with 2 cores @ 2.4 GHz.). The latter
shows to be around six time faster with a computed mean
squared error of 2.947 · 10−3.

operations, plus the tabulation of significant unary functions
(exp, log, trigonometric functions, sqrt, square, etc.). There
also exists some optimized soft mathematical libraries in
the Sun Cephes collection ( [51]). The collection consists in
more than 400 mathematical functions entirely implemented
in C, mostly delivered in different arithmetic precisions (32,
64, 80, 96, 144, and 336 bits operands).

1) Look-up-tables for Posits: Posit LUT size depends on
the overall number of Posit bits. Without any optimization
a table for a binary operation for x bit Posits is a square
one, with number of rows and columns equal to R = C =
2x − 1. Each table entry occupies b bits, depending on the
underlying type used to hold the Posit number. The overall
occupation for a naive table is thus S = R ·C · b. For a 8-bit
Posit represented over a 8-bit unsigned integer type a single
table occupies 64kB. In order to reduce table size symmetry
of addition/subtraction operations can be exploited to halve
table size and number. Moreover multiplication and division
tables can be discarded by exploiting logarithm properties
thus just using the addition/subtraction tables.

C. MAC: Multiply and Accumulate

The task of multiplying two numbers and summing the
result into an accumulator is a very common operation
during DNN operations (such as convolution or matrix
multiplication). The presence of an hardware multiplier-
accumulator is crucial since it helps reducing by one the
number of roundings involved in the computation at each
step. In [52] is presented the implementation of an exact
MAC for low-precision Posits and other floating/fixed-point
types, resulting in 8-bit Posit matching or even overcoming
32-bit Floats.
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TABLE III: Comparison of different activation functions when applied to neural network for traffic sign classification.
Benchmarks were executed on a Intel 7th generation (Kaby Lake) Intel i7-7560U processor with 2 cores @ 2.4 GHz.
1NCT: Normalized Computing Time (Posit computing times are normalized against the Posit16,0 computing times)

GTRSB
Activation FastELU RELU ELU

Acc. (%) Time (ms) NCT1 Acc. (%) Time (ms) NCT1 Acc. (%) Time (s) NCT1

Posit16,0 94.0 5.8 − 92.0 5.0 − 94.2 6.4 −
Posit14,0 94.0 4.6 0.79 92.0 4.3 0.86 94.2 5.2 0.81
Posit12,0 94.0 4.6 0.79 92.0 4.3 0.86 94.2 5.1 0.79
Posit10,0 94.0 4.6 0.79 92.0 4.2 0.84 94.2 5.0 0.78
Posit8,0 92.0 4.6 0.79 86.8 4.0 0.8 91.8 5.0 0.78

D. Fused/Exact Dot Product

When dealing with low bit number representations the dot
product is a critical operation. The dot product is intensively
used in deep neural networks during convolution operations
and overflows can occur with high probability during the
accumulation of term products. In order to avoid most of
these overflows two solutions can be adopted:

1) Fused Dot Product: While a MAC technique computes
the product result, rounds it, adds it to the accumulator and
then round it again, a fused dot product (also known as
fused multiply add) computes the entire expression at the
maximum available precision, typically using an accumula-
tor that has twice the bit of the single operands. In [26] the
potentiality of Posits in overcoming rounding issues when
using fused operations are shown, such as the possibility to
use 32-bit Posits for high-performance computing instead
of 64-bit Posits, thus increasing the computation speed
and reducing the power consumption as well as storage
requirements.

2) Exact Dot Product: The exact dot product (EDP)
technique makes use of the concept of quires (very high
bit-count scratch area) as accumulator, deferring rounding
only at the very last operation, thus minimizing rounding
errors. The concept of quires has been introduced by Ulrich
Kulisch in [53], in order to minimize the number of transistor
used to build a fixed-size register inside a processor. A
quire is a very high-bit count fixed-size scratch area used
to perform arithmetic operations at the maximum possible
precision given by that fixed size type. If the quire is properly
dimensioned the rounding error will affect only the very last
operation, when converting back the result to the original
low-precision type. In order to have the quire being able
not to underflow or overflow during these operations we
need to dimension it depending on the Posit configuration1.
Suppose to have a totbits-bit Posit, the maximum possible
value for the Posit will be maxpos = utotbits−2, while
the minimum possible value will be minpos = 1

maxpos ,
where u = 22

esbits

; each number is then an integer mul-
tiple of minpos. Suppose we need to perform the follow-
ing dot-product {maxpos,minpos} · {maxpos,minpos},
we’ll need the quire to be able to accomodate the value
maxpos2/minpos2. After some transformation, we can

1https://posithub.org/docs/Posits4.pdf

compute the maximum value to hold as

2(4·totbits−8)·2esbits

Moreover one bit has to be reserved for the sign and more
bits to handle the sum (e.g. Gustafson chooses 30 more
bits to guarantee the absence of overflows). Practically, for
example, this means that with a 8-bit Posit (esbits = 0)
we will need one 64-bit quire register, for a 16-bit Posit
(esbits = 1) we will need a 256-bit (4 64-bit registers) and
for 32-bit (esbits = 2) Posit 512-bit (8 64-bit registers).

E. Kalray MPPA approach

In order to address the challenges of high-performance
embedded computing with time-predictability, Kalray has
been refining a homogeneous manycore architecture called
MPPA (Massively Parallel Processor Array) based on VLIW
cores. On the 3rd-generation MPPA processor [54], each
VLIW core is paired with a coprocessor designed for 2D data
processing, especially the mixed-precision tensor operations
of deep learning inference. In particular, each coproces-
sor implements matrix multiply-accumulate operations on
INT8/32 and Float16/32 where we use the ’/’ to describe
the two bandwidths of the multiplicand and the accumulator.
Exploitation of INT8/32 operations relies on the Tensor-
Flow Lite quantization support [55], while exploitation the
Float16/32 artithmetic by standard frameworks is the same as
for NVIDIA GPGPUs. However, unlike the NVIDIA tensor
cores, the Kalray MPPA3 coprocessors perform exact dot-
product inside the Float16.32 matrix multiply-accumulate
operations, by applying Kulisch’s principles on a 80+ε
accumulator [56].

Following [52], the Posit8 numbers have been identified
by Kalray as an effective compressed representation for the
Float32 network parameters: instead of rounding the Float32
parameter values to Float16 values, the results of rounding
can be restricted to Posit8,0 or Posit8,1 numbers, with the
primary benefit of reducing by half the memory capacity
and bandwidth required by the network parameters. Kalray
focuses on the Posit8,0 and Posit8,1 numbers because they
are exactly represented as Float16 numbers, and thus can
benefit from the exact Float16/32 dot-product operator of
the MPPA3 coprocessors. Conversely, the Posit8,2 numbers
include 8 values of magnitude 65536 and larger that are out
of range of the Float16 numbers, while the Posit8,3 numbers

https://posithub.org/docs/Posits4.pdf
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overflow even the range of the BFLOAT16 numbers. Evalu-
ation of the hardware costs and application benefits of using
Posit8,0 numbers as compressed format for Float32 network
parameters is on-going. This evaluation should lead to the
inclusion of new arithmetic instructions to expand Posit8,0
to Float16 in the MPPA IP delivered to the H2020 European
Processor Initiative.

Preliminary results obtained comparing the use of Float32,
Float16 and Posit8,E (with a E from 0 to 3) for data storage
(while computation is still done in Float32) during the
inference phase using network models for both classification
task (e.g. SqueezeNet, Alexnet, VGG16, VGG19, GoogleNet
and Custom CNN on MNIST and CIFAR100) and detection
tasks (e.g. YOLOv3) show that Posit8,1 or Posit8,2 offer
the best performance, with an accuracy loss below 1% vs.
Float32, but with a data compression of factor 4. This will
lead to reduced complexity for data transfer and storage that
are dominating DNN applications.

To be noted that: i) the networks where pre-trained using
Float32, and ii) the used datasets in the reported results had
thousand of images. Indeed, the ILSVRC2012 (ImageNet
Large Scale Visual Recognition Challenge 2012) dataset has
been used for classification and the VOC2012 (Visual Object
Classes Challenge 2012) dataset for detection.

F. Vectorization of Posit operations (tested on random im-
ages)

While in the absence of proper hardware support for
Posits (i.e. Posit Processing Unit) we can still accelerate
DNN core functions and operators using already existing
hardware accelerators. This is the case of ARM Scalable
Vector Extension (SVE) SIMD engine. We have also ported
our cppPosit library to provide vectorized version of Posit
functions exploiting ARM SVE library. When talking about
vectorized functions, L1 Operations are the easiest ones to
vectorize. In fact, since they only rely on integer arithmetic
and logic, we can effortlessly exploit native ARM SVE vec-
torization of integer operations. Benchmarks were executed
on a HiSilicon Hi1616 CPUwith 32@2.4GHz ARM Cortex-
A72, using the ARM SVE Instruction Emulator. Table IV
shows some timing results between vectorized and non-
vectorized approaches. Furthermore, we have provided an
interface between the Posit floating point backend and the
ARM SVE types in order to vectorize L3/4 operations as
well. This allowed to implement Posit-accelerated version
of convolution and pooling operations. Table V shows an
example of timing results with 3× 3 convolution and max-
pooling operations. Finally, Table VI shows vectorization
performance in terms of processing time on low-precision
inference on Posit8,0. Performance have been obtained on
the tinyDNN library, on various very deep neural netwoks.
All benchmarks have been executed on the ARM instruction
emulator. As reported, the processing time with SVE vec-
torization enabled dramatic speedups. Note that, in terms of
absolute values, the processing time is quite large. Clearly,
this is due to the fact that SVE-enabled hardware is not

TABLE IV: L1 operations performance processing time (in
milliseconds) comparison between non-vectorized (naive)
and vectorized (SVE-X) approaches. Each timing result
comes from function computation on a vector of 8192 items

FastSigmoid (ms) FastTanh (ms) FastELU (ms)
Posit 8,0 16,0 8,0 16,0 8,0 16,0

Version
Naive 3.08 3.41 5.76 7.24 8.12 8.54

SVE-128 0.73 1.51 1.32 2.65 1.29 2.60
SVE-256 0.59 1.05 1.18 1.83 1.16 1.79
SVE-512 0.43 0.62 0.69 1.09 0.69 1.05

SVE-1024 0.29 0.39 0.48 0.72 0.46 0.68
SVE-2048 0.22 0.28 0.36 0.50 0.35 0.47

TABLE V: 3× 3 Convolution and Pooling processing time
(in milliseconds) comparison on two common Posit config-
uration with 225×225 random images. The Naive approach
is the non-vectorized one. The other approaches are with
incremental SVE-vector registers.

Max Pooling (ms) Convolution (ms)
Posit 8,0 16,0 8,0 16,0

Version
Naive 49.7 59.41 80.67 80.84

SVE-128 9.51 26.52 24.02 37.99
SVE-256 8.89 22.06 11.66 21.49
SVE-512 6.96 14.69 6.85 14.03
SVE-1024 5.12 11.84 6.38 12.88
SVE-2048 4.13 9.76 3.65 8.81

available at moment of writing and all benchmarks are
executed inside the ARM SVE instruction emulator.

VII. DNN SIGNAL PROCESSING PERFORMANCE:
ACCURACY AND COMPLEXITY

In [52] and [57] Carmichael et al. show an architecture
using Posits in deep neural networks called Deep Positron
using exact multiply and accumulate technique (EMAC)
on 8-bit low precision formats. The architecture has been
tested on the MNIST, Fashion-MNIST and datasets report-
ing no drop in accuracy with regards to Float32. Another
approach to deep learning with low-bit numbers has been
tested in [39], using logarithmic numbers with a ResNet-
50 architecture on Imagenet, resulting in a drop of 0.90%
percentage point when shifting from Float32 to logarithmic
representation. We have integrated the cppPosit library in a
deep neural network C++ library called tiny-DNN [58], that
is capable of support various different computing arithmetic

TABLE VI: Image processing time (in seconds) for various
very deep neural network models using Posit8,0. For this
benchmark random RGB 224× 224 images are employed.

Version Alexnet Resnet34 VGG16 VGG19 Resnet150
Time(s) Time(s) Time(s) Time(s) Time(s)

Naive 40.06 146.07 590.68 675.32 779.7
SVE-128 2.76 10.07 40.74 46.57 53.77
SVE-256 2.64 9.61 38.88 44.45 51.32
SVE-512 2.54 8.93 36.12 41.30 47.68
SVE-1024 2.44 8.92 36.06 41.23 47.60
SVE-2048 2.34 8.90 35.97 41.13 47.48
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such as BFLOAT16, flexpoint and Posits. Then we tested the
accuracy of different network models in image classification
benchmarks such as MNIST, Fashion-MNIST, CIFAR-10
and German Traffic Road Sign Recognition Benchmark
(GTRSB) using the fused dot product (FDP) technique. For
MNIST dataset we registered a drop of 0.9% percentage
points when testing the model from Float32 to Posit8. For
GTRSB we registered a drop of 0.2% percentage points
instead. For other Posit configurations with 16, 14, 12, 10 bits
we registered no drop in accuracy from Float32 to the Posit
type.

VIII. BENCHMARK DATASETS AND EXAMPLES OF
ACHIEVABLE RESULTS

We have considered different standard datasets, like the
one shown in Figure 5, and standard CNN architectures,
like the one shown in Figure 6. In particular, for the
MNIST and GTSRB benchmarks we trained customized
CNN variants of that reported in Figure 6, including Posit-
related optimizations to convolutional and activation layers.
For the Fashion-MNIST benchmark we used a pre-trained
model with starting accuracy of 95%. For CIFAR-10 we
used VGG16 pre-trained model [59]. All the networks
were initially trained using Float32 and then tested on
the corresponding test sets, converting each Float32 trained
model using different Posit configurations. Furthermore, in
order to provide a fair timing-accuracy tradeoff comparison,
the Float32 model has been tested exploiting the SoftFloat
library for software-emulated floating point numbers.

A. MNIST, Fashion-MNIST and CIFAR-10

Table VII presents the results obtained on three well-
known classification benchmarks: MNIST, Fashion-MNIST
and CIFAR-10. MNIST is a digit recognition problem, while
Fashion-MNIST has been designed as more complex drop-
in replacement for the MNIST dataset, providing more
general classes to be recognized (such as fashion products).
Furthermore, CIFAR-10 consists in an even more complex
task, bringing 3-channel images in the dataset.

As reported the tests on the model with the different types
show that Posits with zero exponent bits and sized from 12
to 14 bits can be a perfect, replacement for Float32, while
with 10 and 8 bits can replace Float32 with some drop in
accuracy. The same holds for the Fashion-MNIST dataset.

Note how the processing time (on an Intel 7th genera-
tion (Kaby Lake) i7 processor) for single image inference
of VGG16 model on a CIFAR-10 sample is expressed
in seconds, highlighting the infeasibility of these model
on traditional CPU architectures. However we are moving
towards GPU-enabled DNN libraries as described in Section
IX. For comparison, an entire training epoch of 60k CIFAR-
10 samples on a Resnet-50 architecture only takes around 30
seconds on a dual GPU (Tesla T4) configuration, thus only
0.5 milliseconds for forward and backward passes (including
weight update).

To be noted also that, to make the comparison fair, we
compare in Tables VI and VII the software implementation
of Posits (using our developed cppPosit library) with a
software implementation of Floats (the SoftFloat library).
From Tables VI and VII we can observe that moving
from SoftFloat32 to Posit8,0 we get (roughly) the same
classification accuracy on all the considered datasets, but
with a reduction in computing time of about a factor 3.

B. Automotive Benchmarks: The traffic sign recognition
problem

Fig. 5: GTRSB dataset example

In this subsection we report the results obtained on a clas-
sification benchmark related to assisted/autonomous driving.
Benchmarks were executed on an Intel 7th generation (Kaby
Lake) Intel i7-7560U processor with 2 cores @ 2.4
GHz. German Traffic Road Sign Recognition Benchmark is
a baseline benchmark for road sign recognition, being very
interesting as automotive task. Table VIII shows that also in
this case Posits from 12 to 16 bits and even 10 bits can be
a perfect replacement for Float32 while Posit8,0 performs
good with a little drop in accuracy.

Fig. 6: LeNet5 architecture as described in [49]. Some
customisations have been added to the network in order to
better fit our goals: the activation function has been changed
to FastTanh (as described before) for the MNIST dataset and
to a fast approximation of ELU for the GTSRB dataset. The
input size of the first layer has been extended to hold the
64× 64× 3 color images of the GTSRB datasets.

Fig. 7: Cityscapes Dataset example of semantic segmentation
of a road in Stuttgart.

We have also started an activity to assess the perfor-
mance of Posits using the Yolo (You Only Look Once)
approach [60, 61] and on Apollo [62] (http://apollo.auto/)
heterogeneous framework and the results achieved confirm
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TABLE VII: Accuracy and processing time obtained on MNIST, Fashion-MNIST and CIFAR-10 datasets. Processing time
is evaluated as the mean per-sample inference time on the testset of the relative dataset.
1NCT: Normalized Computing Time (Posit computing times are normalized against SoftFloat32 computing times)

Type MNIST Fashion-MNIST CIFAR-10
Acc. (%) Time (ms) NCT1 Acc. (%) Time (ms) NCT1 Acc. (%) Time (s) NCT1

SoftFloat32 99.4% 8.8 − 95.0% 41.9 − 93.75% 7.75 −
Posit16,0 99.4% 5.2 0.59 95.0% 13.6 0.32 93.75% 2.55 0.32
Posit14,0 99.4% 4.6 0.52 95.0% 13.5 0.32 93.75% 2.49 0.32
Posit12,0 99.4% 4.6 0.52 95.0% 13.5 0.32 93.75% 2.44 0.31
Posit10,0 99.3% 4.6 0.52 95.0% 13.4 0.32 93.75% 2.40 0.30
Posit8,0 98.5% 3.8 0.43 94.0% 13.4 0.32 85.0% 2.34 0.30

TABLE VIII: Accuracy-processing time trade-off obtained
on the German Traffic Road Sign Benchmark dataset.
1NCT: Normalized Computing Time (Posit computing times
are normalized against SoftFloat32 computing times)

Type GTRSB
Acc. (%) Time (ms) NCT1

SoftFloat32 94.0% 15.86 −
Posit16,0 94.0% 6.37 0.40
Posit14,0 94.0% 5.21 0.32
Posit12,0 94.0% 5.08 0.32
Posit10,0 94.0% 5.0 0.31
Posit8,0 93.8% 4.0 0.25

what already obtained above with GTRSB, MNIST and
Fashion-MNIST datasets. Moreover we started an activity
to asses Posit performances in semantic segmentation tasks
(such pixel-level or instance-level classification, [33, 34]) on
famous datasets like CityScapes, see Figure 7. The results
we are obtaining are in line with those obtained on, MNIST
and fashion-MNIST and GTRS benchmark datasets.

C. k-Nearest Neighbours results

The k-Nearest Neighbours (k-NN) algorithm is ubiquitous
in pattern recognition problems. It can be used to segment
images, or to compute the normal vectors to each point
of a point cloud obtained by a lidar sensor mounted on
a car. The k-NN algorithm algorithms finds the K nearest
neighbours of a given point, from those in a given dataset.
We have compared the performance of the k-NN when
using Posits and Floats and, again, we have found that the
accuracy of a Posit16,0 is very close to that of Float32 (see
Fig. 8), and that a Posit8,0 outperforms a Float16. These
results have been obtained on a single dataset, but scaling
it multiple times in order to reduce the dynamic range of
the input data (thus allowing low-precision data types to
be competitive with Float32). More details can be found in
[63]. The obtained results confirm that Posits are powerful
in a number of machine learning application and thus this
means that implementing Posit-based HW accelerators will
be beneficial for a number of different applications.

D. Next Experiments

We are working towards the implementation of other
fast approximated functions (e.g. ELU). We are currently
porting our cppPosit-based tinyDNN library on the ARM

Fig. 8: Performance of the k-NN using different data types,
on a single dataset using different values for the scaling
factor.

instruction emulator used within the H2020 EPI project
(European Processor Initiative, [64]), to exploit the Scalable
Vector Extension (SVE2) as much as possible (providing a
vectorization backend for the cppPosit library).

We are also planning to test our software on available
simulators like GEM5, SESAM and MUSA, in order to
provide useful feedbacks to the ongoing EPI processor co-
design process.

IX. CONCLUSIONS AND ROADMAPS

In this work we have reviewed the state-of-the-art of DNN
signal processing for autonomous driving application and the
quest for novel representations of real numbers, that must
be both efficient and reliable. We have seen how Posit is
a suitable drop-in replacement for IEEE-754 standard, and
we have assessed its potentialities in autonomous driving
applications. Implementations with both SW-libraries or
HW-SW embedded systems, from academia and industry,
have been discussed. The achieved results when combining
Posit arithmetic with DNN are promising in terms of trade-
off between accuracy and processing time. From this and
related works, it is clear that the current challenges are i)
the development of real-time and low-power accelerators for
performing DNN inference at the edge, ii) the development
of methods for DNN verification and validation, with the
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high coverage rates required by the standards for safety-
critical applications and iii) moving towards a GPU-enabled
DNN library, such as Tensorflow, in order to build, train
and evaluate even more complex models, once integrated
with our cppPosit library. Furthermore we plan to test
our approach on GPU-enabled ARM devices such as the
NVIDIA Jetson boards and on mobile devices that do not
employ GPUs or even without the FPU.
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