
Deep Learning Inference on the
MPPA3 Manycore Processor

Benoı̂t Dupont de Dinechin
Kalray S.A.

benoit.dinechin@kalray.eu

Julien Hascoët
Kalray S.A.

jhascoet@kalray.eu

Julien Le Maire
Kalray S.A.

jlemaire@kalray.eu

Nicolas Brunie
Kalray S.A.

nbrunie@kalray.eu

Abstract—We present the principles of deep learning inference
on the MPPA3, Kalray’s third-generation manycore processor.
Unlike dedicated deep learning accelerators, the MPPA3 platform
is also effective for image processing, signal processing, and
numerical processing applications. This platform combines a
CPU-based manycore architecture, processing elements com-
posed of VLIW cores tightly coupled to tensor coprocessors, a
standard-based programming environment capable of offloading
C/C++/POSIX kernels, and a dedicated deep learning inference
code generator. First deep learning inference results on the
MPPA3 platform demonstrate higher performance and efficiency
than a high-end embedded GPGPU platform.

Index Terms—manycore processor, deep learning inference

I. INTRODUCTION

In order to address the challenges of high-performance
embedded computing with time-predictability, Kalray has been
refining an homogeneous manycore architecture called MPPA
(Massively Parallel Processor Array). The MPPA architecture
applies the defining principles of manycore architectures:
processing elements (SCs on a GPGPU) are assembled with
a multi-banked local memory and a slice of the memory
hierarchy into compute units (SMs on a GPGPU), which share
an external memory and a global interconnect. The distinctive
characteristic of the MPPA manycore architecture compared
to GPGPU architectures is the integration of fully software-
programmable VLIW cores for the processing elements (PEs),
and the provision of a RDMA engine in each compute unit.
The third-generation MPPA processor (Figure 1), manufac-
tured in CMOS 16FFC technology, significantly improves
over the previous generations in the areas of performance,
programmability, functional safety, and cyber-security [1].

Although initially targeted to CPU-oriented (networking
and storage infrastructure) and DSP-oriented (image and nu-
merical processing) parallel workloads, the second-generation
MPPA processor [2] has demonstrated significant potential
for low-latency deep learning inference [3], thanks to the
numerical performances of the VLIW cores, to the large on-
chip local memories, and to the multicasting capabilities of
the RDMA network-on-chip. Realizing this potential on the
MPPA3 processor was achieved through architecture improve-
ments, development of a unified programming environment for
offloading C/C++/POSIX kernels, and re-engineering of the
KaNN (Kalray Neural Network) inference code generator.

This paper discloses the features of the MPPA3 platform
that enable high-performance and low-latency deep learn-
ing inference. Section II presents the MPPA3 architecture
improvements for accelerated tensor processing. Section III
introduces the standard-based programming environment for
offloading C/C++/POSIX kernels, which applies to optimized
libraries, to user application code, and to KaNN-generated
code. Section IV describes the design and implementation of
the KaNN deep learning inference code generator. First deep
learning inference results are reported in Section V.

II. MPPA3 TENSOR PROCESSING

When considering deep learning acceleration, several ar-
chitectural approaches appear effective. These include loosely
coupled accelerators implementing a systolic datapath (Google
TPU, NVidia NVDLA), coarse-grained reconfigurable arrays
(Wave DPU, Cerebras WSE), or a bulk-synchronous parallel
graph processor (GraphCore IPU). Other approaches tightly
couple general-purpose processing units with vector or tensor
processing units that share the instruction stream and the
memory hierarchy. The latter approach has been instantiated
in a peculiar way on the MPPA3 manycore processor.

On the MPPA3 processor [1], each VLIW core is paired
with a tightly-coupled coprocessor for the mixed-precision
matrix multiply-accumulate operations of deep learning op-
erators (Figure 2). The coprocessor operates on a dedicated
datapath that includes a 48×256-bit register file. Within the
6-issue VLIW core architecture, one issue lane is dedicated to
the coprocessor arithmetic instructions, while the branch and
control unit (BCU) may also execute data transfer operations
between the coprocessor registers and the VLIW core general-
purpose registers. Finally, the coprocessor leverages the 256-
bit load-store unit (LSU) of the VLIW core to transfer data
blocks from/to the local memory at the rate of 32 bytes per
clock cycle. It then uses these 32-byte data blocks as either left
or right operands of matrix multiply-accumulate operations.

The coprocessor datapath is designed assuming that the
activations and weights respectively have a row-major and
a column-major layout in memory, in order to avoid the
complexities of Morton memory indexing [4]. Due to the
mixed-precision arithmetic, matrix operands may take one, two
or four consecutive registers, with element sizes of one, two,
four, and eight bytes. In all cases, the coprocessor operations

1



Fig. 1: Overview of the MPPA3 manycore processor.

Fig. 2: Tensor coprocessor data path.

Fig. 3: Load-scatter to a quadruple register operand.

interpret matrix operands as having four rows and a variable
number of columns, depending on the number of consecutive
registers and the element size. In order to support this in-
variant, four 32-byte ’load-scatter’ instructions to coprocessor
registers are provided. A load-scatter instruction loads 32
consecutive bytes from memory, interprets these as four 64-
bit (8 bytes) blocks, and writes each block into a specified
quarter of each register that composes the destination operand
(Figure 3). After executing the four load-scatter variants, a
4×P submatrix of a matrix with row-major order in memory
is loaded into a coprocessor register quadruple.

The coprocessor implements matrix multiply-accumulate
operations on INT8.32, INT16.64 and FP16.32 representa-
tions1. The coprocessor is able to multiply-accumulate 4 × 8
by 8 × 4 8-bit matrices into a 4 × 4 32-bit matrix (128

1Numbers in each pair denote respectively the bit-width of the multiplicands
and of the accumulator, while FP refers to the standard IEEE 754 binary
floating-point representation

Fig. 4: INT8.32 matrix multiply-accumulate operation.

Fig. 5: INT16.64 matrix multiply-accumulate operation.

MAC operations per clock cycle), held in two consecutive
registers (Figure 4). The 8×4 8-bit matrix operand is actually
a 4 × 8 operand that is transposed at the input port of
the multiply-accumulate operation. The coprocessor may also
perform multiply-accumulate operations of two 4 × 4 16-bit
matrices into a 4 × 4 64-bit matrix (64 MAC operations per
clock cycle), held in four consecutive registers (Figure 5).
Finally, the coprocessor supports multiply-accumulate of two
4× 4 FP16 matrices into a 4× 4 FP32 matrix, but performed
by four successive operations2 (16 FMA operations per clock

2Motivated by saving silicon area and not constrained by the architecture.



Local work size = { 5 }

Global work size = { 25 }

Dimension = 1

= work-item

Work-group
Compute
Cluster

Work-group
Compute
Cluster

Work-items are
executed in parallel

in work-groups
= Idling PE

= Computing PE

Fig. 6: OpenCL NDRange execution using SPMD Mode.

cycle). The FP16.32 matrix operations actually compute exact
4-deep dot-products with accumulation, by applying Kulisch’s
principles on a 80+ε accumulator [5].

III. PROGRAMMING ENVIRONMENT

The programming environment used for deep learning in-
ference on the MPPA3 processor is derived from the Portable
Computing Language (PoCL) project3, which proposes an
open-source implementation of the OpenCL 1.2 standard4 with
support for some of the OpenCL 2.0 features. The OpenCL-C
kernels are compiled with LLVM, which has been re-targeted
for this purpose to the Kalray VLIW core. In OpenCL, a host
application offloads computations to an abstract machine:

• An OpenCL device is an offloading target where compu-
tations are sent using a command queue.

• An OpenCL device has a global memory allocated and
managed by the host application, and shared by the
multiple compute units of the OpenCL device.

• An OpenCL compute unit comprises several processing
elements (PEs) that share the compute unit local memory.

• Each OpenCL PE also has a private memory, and a
shared access to the device global memory without cache
coherence across compute units.

The OpenCL sub-devices are defined as non-intersecting sets
of compute units inside a device, which have dedicated com-
mand queues while sharing the global memory.

In the port of the PoCL environment onto the MPPA3
processor, two offloading modes are provided:

LWI (Linearized Work-Items) All the work items of a
work-group are executed within a loop on a single
PE. This is the default execution mode of PoCL.

SPMD(Single Program Multiple Data)] The work-items of
a work-group are executed concurrently on multiple
PEs inside a compute cluster, where the __local
OpenCL memory space is shared by the PEs and
physically located in the local memory (Figure 6).

These mappings of the abstract OpenCL machine elements to
the MPPA3 architecture components appear in Table I.

3http://portablecl.org/
4Passing the OpenCL 1.2 conformance with PoCL is work in progress.

Fig. 7: KaNN inference code generator workflow.

On the MPPA3 processor, each deep learning inference ap-
plication is dispatched to a partition composed of one or more
compute clusters, which is exposed as an OpenCL sub-device
executing in SPMD mode. Moreover, the code produced by
the KaNN generator relies on the high-performance features
implemented the GCC compiler for the Kalray VLIW core.
Some of these features are not available in the LLVM compiler,
in particular the support of the C named address spaces defined
by ISO/IEC TR 18037:2008. The C named address spaces
are used by the GCC compiler for the Kalray VLIW core to
annotate objects and addresses that are accessed using non-
temporal (L1D cache bypass) and/or non-trapping loads.

In order to call high-performance code compiled by GCC
and MPPA communication libraries [6] from OpenCL-C ker-
nels, the LLVM OpenCL-C compiler and PoCL have been
extended to understand function declarations annotated with
__attribute__((mppa_native)). Whenever such ref-
erence is seen in OpenCL-C source code, the PoCL linking
stages assumes that the symbol is resolved, and the MPPA3
compute cluster run-time environment dynamically loads and
links the native function before starting execution of the
kernel. This native function extension also enables kernels to
access other services such as a lightweight lock-free POSIX
multi-threading environment, fast inter-PE hardware synchro-
nisations, dynamic local memory allocation, and system call
remoting to the host OS including FILE I/O.

IV. KANN CODE GENERATOR

The KaNN (Kalray Neural Network) code generator is
a deep learning inference compiler targeting the MPPA3
platform. It takes as input a trained neural network model
described within a standard framework such as Caffe, Ten-
sorFlow or ONNX, and produces executable code for a set of
compute clusters exposed as an OpenCL sub-device (Figure 7).
Targeting OpenCL sub-devices allows several model infer-
ences to execute concurrently on a single MPPA3 processor.



OpenCL Device Global Memory Sub-device Compute Unit
MPPA3

Component
MPPA Processor or

MPPA Domain
External DDR

Memory
Group of

Compute Cluster(s)
Compute Cluster (SPMD)
Processing Element (LWI)

TABLE I: Mapping of OpenCL machine elements to the MPPA architecture components.

Fig. 8: Activation splitting across MPPA3 compute clusters.

The KaNN code generator optimizes for batch-1 inference,
with the primary objective of reducing latency. At user option,
FP32 operators in the original network can be converted to
FP16 operators. Integer quantization such as the one used
by TensorFlow Lite is also supported, however it must be
expressed in the input model. Indeed, such models are assumed
to be trained with fake quantization [7], which must match the
actual quantization applied during inference.

Following import of the input model into an intermediate
representation, optimizations are applied to the compute graph:

• elimination of channel concatenation and slicing copies;
• padding of input activations of convolutional layers;
• folding of batch normalizations, scalings, additions, into

a single point-wise fused multiply-add operator;
• fusion of convolutions with ReLU activation functions;
• adaptation of arithmetic representations.

The KaNN code generation scheme is to perform inference
in topological sort order of the (optimized) compute graph,
parallelizing the execution of each operator over all the
compute clusters of the target sub-device. When executing
an operator, its input and output activations are distributed
across the target local memories configured as SPM, while
the network parameters are read from external DDR memory.
Depending on the type of the operator (convolutional or fully
connected), the spatial dimension sizes and the channel depth,
input and output activations are distributed over the compute
cluster local memories by splitting either along the spatial
dimensions, or along the channel dimension (Figure 8).

• In case of spatial splitting of the output activations, each
compute cluster only accesses an input activation tile and
its shadow region, while all the operator parameters are
required; these are read once from the DDR memory and
multicasted to all the target compute clusters.

• In case of channel splitting of the output activations, the
full input layer must be replicated in the local memory
of each compute cluster, but only the corresponding slice
of parameters is read from the DDR memory.

In all cases, activations are laid out in the local memory of
the compute clusters along the channel dimension.

For any compute cluster in the sub-device, the code gener-
ation process defines and implements a local schedule for:

• local memory buffer allocations/de-allocations;
• DDR memory read/multicast of parameters;
• execution of operator operations;
• inter-cluster activation exchanges;
• and inter-cluster synchronizations.

This process is backed by the computation graph (Figure 9)
augmented with parameter read tasks (yellow) and activation
production tasks (blue).

The results of KaNN code generation is a collection of
OpenCL binary kernels, where each kernel interprets the
contents of a static data block composed of a sequence of
records. Each record contains its length, a native compute
function pointer, and a structure containing arguments for the
compute function. For each record, the OpenCL kernel calls
the native compute function with the pointer to the structure.
The kernel ends after interpretation of the last record.

V. EXPERIMENTAL RESULTS

The MPPA3 processor has been first demonstrated at the
2020 international Consumer Electronics Show (CES), running
a Yolo v3 model inference for object detection and classifi-
cation in the perception of a car autonomous driving system
(Figure 10). The standard Yolo v3 configuration is used, with
Darknet-53 as backbone and input image size of 416 × 416
[8]. Inference is performed using FP16.32 arithmetic, with
KaNN targeting the 5 clusters of the MPPA3 processor, since
an external host CPU is used. When operating at 1.2 GHz, the
performance is close to 20 FPS (Frames Per Second).

It is interesting to compare this figure to the performances
of GPGPUs. Yolo authors report5 that the NVIDIA Pascal
Titan X processes 416 × 416 images at 35 FPS, for a total
of 65.86 109 floating-point operations. A NVIDIA blog6

mentions that the Jetson AGX Xavier processor runs Yolo v3
416 × 416 model inference with FP16 arithmetic at 18 FPS.

5https://pjreddie.com/darknet/yolo/
6https://devtalk.nvidia.com/default/topic/1058408/

deepstream-sdk/yolov3-fps-on-xavier/



Fig. 9: KaNN augmented computation graph.

Fig. 10: Demonstration at the 2020 CES (courtesy NXP).

The latter is the most relevant, as Xavier is the highest
performance embedded processor designed by NVIDIA for
robots, drones and other autonomous machines.

The Jetson AGX Xavier processor7 integrates a Volta GPU
with 512 CUDA cores and 64 Tensor Cores, for up to 11
TFLOPS FP16 peak performance at 1.37GHz. By comparison,
the MPPA3 processor offers 3 TFLOPS FP16 peak perfor-
mance at 1.2GHz. When looking at efficiency defined as the
ratio of actual performance to the peak rating, it is apparent
that the MPPA3 processor performs significantly better.

VI. CONCLUSIONS

We present the Kalray MPPA3 manycore platform and its
companion KaNN code generator in the context of accelerating
deep learning inference for intelligent systems. The MPPA3
processor is composed of five compute clusters, which share
the processor external DDR memory and the I/O controllers
through two on-chip global interconnects. Each compute clus-
ter contains a 4MB local memory shared by 16 VLIW cores,
which are capable of running standard POSIX multi-threaded
C/C++ applications. Every one of the 80 VLIW cores is tightly
coupled to a coprocessor dedicated to mixed-precision matrix
multiply-accumulate operations.

The PoCL (Portable Computing Language) environment
has been adapted to the MPPA3 processor, along with the
retargeting of the LLVM compiler to the VLIW core for
compiling OpenCL-C code. The generic PoCL environment
has been extended to support OpenCL sub-devices and kernel
calls to native C/C++/POSIX code compiled with GCC.

7https://devblogs.nvidia.com/nvidia-jetson-agx-xavier-32-teraops-ai-robotics/

This environment is leveraged by the KaNN code generator
to produce OpenCL binary kernels, given models trained under
industry-standard frameworks. Targeting OpenCL sub-devices
for the KaNN generated code enables to run concurrently
several model inferences on the MPPA3 processor. The ex-
ecution scheme of the KaNN code generator takes full ad-
vantage of the MPPA3 manycore architecture, specifically the
compute cluster local memories to distribute the activations,
the multicasting capabilities of the RDMA network-on-chip to
read the parameters from external DDR memory, and the fast
synchronization mechanisms between cores.

First deep learning inference results are demonstrated on
the Yolo v3 object detection model, where the MPPA3 pro-
cessor outperforms a high-end embedded GPGPU designed
for robots, drones and other autonomous machines.

ACKNOWLEDGEMENT

This work was performed in the scope of the ES3CAP
research project, under the Bpifrance Invest for the Future
Program (Programme d’Investissements d’Avenir – PIA). It
is also supported by the OCEAN12 H2020 ECSEL project.

REFERENCES

[1] B. D. de Dinechin, “Consolidating High-Integrity, High-Performance, and
Cyber-Security Functions on a Manycore Processor,” in Proceedings of
the 56th Annual Design Automation Conference 2019, DAC 2019, Las
Vegas, NV, USA, June 02-06, 2019, 2019, p. 154.

[2] J. Hascoet, B. D. de Dinechin, K. Desnos, and J. Nezan, “A Distributed
Framework for Low-Latency OpenVX over the RDMA NoC of a Clus-
tered Manycore,” in 2018 IEEE High Performance Extreme Computing
Conference, HPEC 2018, Waltham, MA, USA, September 2018, pp. 1–7.

[3] Kalray, Deep Learning on the MPPA Manycore Processor. White Paper,
June 2015.

[4] S. Rovder, J. Cano, and M. O’Boyle, “Optimising Convolutional Neural
Networks Inference on Low-Powered GPUs,” in 12th International Work-
shop on Programmability and Architectures for Heterogeneous Multicores
(MULTIPROG-2019), January 2019.

[5] N. Brunie, “Modified Fused Multiply and Add for Exact Low Precision
Product Accumulation,” in 24th IEEE Symposium on Computer Arith-
metic, ARITH 2017, London, United Kingdom, July 2017, pp. 106–113.

[6] J. Hascoët, B. D. de Dinechin, P. G. de Massas, and M. Q. Ho,
“Asynchronous One-Sided Communications and Synchronizations for a
Clustered Manycore Processor,” in Proceedings of the 15th IEEE/ACM
Symposium on Embedded Systems for Real-Time Multimedia, ESTImedia
2017, Seoul, Republic of Korea, October 2017, pp. 51–60.

[7] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks for
efficient integer-arithmetic-only inference,” in 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 2018, pp. 2704–2713.

[8] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
University of Washington, Tech. Rep., 2018.


